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Image-based Eye Redness Using Standardized
Ocular Surface Photography

Arno Lins, B.Sc

Abstract—Systemic disease, inflammation, and irritation of
the conjunctiva or sclera cause conjunctiva blood vessels to
dilate, making the eye appear red [1]. The intensity of the
redness is a crucial parameter in grading and monitoring ocular
surface diseases. This ocular redness can be clinically graded
by experts using various drawings- or photographic scales [2].
However, gradings based on these scales are subjective and
suffer from inter-grader variability and bias. Hence, comparison
and repeatability of different studies are difficult [2]. Objective
methods based on digital ocular surface images were developed
but are often limited by non-standardized imaging, i.e. variabil-
ity in position, focus, illumination, and operator dependencies
[1][3][4]. The Cornea Dome Lens (CDL) imaging system provides
standardized ocular surface photography intending to overcome
these limitations. Combined with a robust image analysis frame-
work, there is the potential to make reproducible and accurate
statements about eye redness. This work aims to develop the base
for a reproducible pipeline to grade bulbar redness for the CDL
imaging system. For this purpose, a semi-automated approach
was established in the first step, extracting equal regions from a
defined set of images. Subsequently, a Random Forest (RF) was
trained for sclera segmentation. Finally, redness intensity based
on Fieguth and Simpson [4] was tested as a feature to grade
bulbar eye redness and further used to analyze a healthy set of
volunteers. In addition, artificial eyes based on the Digital Bulbar
Redness (DBR) scale were manufactured, imaged and analyzed
for validation. The developed pipeline proved feasible to extract
eye redness for the novel ocular imaging system for healthy eyes.
Hence, it will serve as a solid baseline for further advancements,
especially when adapting the redness extraction to more complex
clinical cases with different ocular surface anomalies.

Index Terms—Ophthalmic photography · Ocular surface ·
Sclera · Classification · Feature extraction · Machine learning
· Artificial eye.

I. INTRODUCTION

A. Motivation

BULBAR ocular redness manifests due to the enlargement
of conjunctival and episcleral blood vessels. The redness

is induced either by inflammation and irritation of the bulbar
conjunctiva or sclera or by a systemic disease [1][5]. Conjunc-
tival hyperemia is one of the most common causes for visits
to primary care physicians, optometrists, ophthalmologists,
and emergency rooms [6]. It is a consistent sign of the
ocular response to a pathologic stimulus. Moreover, it is a
cardinal finding in a wide range of ocular surface disorders
such as conjunctivitis, moderate-severe blepharitis, dry eye
disease, and traumatic abrasions, among others [7]. Therefore,
accurate analysis of the ocular surface redness is an important
biomarker and the basis for further medical treatment planning.
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A redness grading scale contains a range of images, each
showing a different severity, from a white to a red eye.
Experts like ophthalmologists generally grade an eyes red-
ness by comparing the examined eye with those reference
scales. Many different grading scales are available for this
purpose in digital or in printed form. The reference images
of a visual grading scale are either drawings (e.g. Efron) or
photographs (e.g. CCLRU). Some of the most common scales
are: Efron, (CCLRU) IER, VBR McMonnies/Chapman-Davis,
Annunziato or Vistakon-Synoptik grading scale. Baudouin et
al. analysed different scales and found scales cover different
ranges of redness, and at least some scales are not linear across
this range [2]. Due to this variety, Efron et al. recommend
that clinicians stick with one scale for better and reproducible
results. Unfortunately, this makes it challenging to compare
scientific work which used different grading scales because
the scales are not interchangeable with each other [8]. Hence,
objective methods to grade redness are investigated in liter-
ature [9] [10] but often using different experimental setups,
including different photographic devices, e.g. slit lamps and
different operator dependant settings.

Binotti et al. [11] addressed that subjective scales are prone
to variations of photographic devices, such as illumination,
white balance, magnification or image resolution. The most
common instrument to investigate bulbar redness is the slit
lamp, a very powerful, versatile tool with many imaging modes
to choose. However, a certain amount of know-how is required
to operate the slit lamp. Furthermore, modern slit lamps have
a camera integrated to acquire digital images and store them
for documentation. Moreover, many different cameras are on
the market. So even when experiments are reproducible, a
comparison is difficult due to the wide variety of experimental
setups.

Currently, only a few commercial alternatives exist. The
Cornea Dome Lens (CDL) Imaging System aims to provide
standardised ocular surface color photographs regarding posi-
tion, lighting, focus and operator independence. With a novel
lens design, high-resolution images of the cornea and the
remaining anterior bulbar surface shall be possible.

B. Aim

This work aims to establish a reproducible and standardised
pipeline to grade ocular redness with the CDL imaging system.
The goal is to develop an automated way to get from raw
images recorded by the device to a statement about the bulbar
redness of the imaged eye. The different steps of the pipeline
are investigated. This process demands image analysis through
a pipeline of multiple steps to obtain top-level information
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Fig. 1: Different subjective grading scales [8]: Annunziato
and Efron representing drawings, Vistakon and CCLRU using
images. The CCLRU additionally is divided into 4 grades.

about the ocular redness based on the high-resolution photos
of the ocular surface. The major steps were: (i) finding a robust
way to select sclera regions in the eye, (ii) defining a method
to extract redness from the sclera regions. (iii) Furthermore,
visualise bulbar redness based on the extracted redness. For
the first step, data from healthy subjects were used to gain
an impression of possibilities and limitations. For the second
step, DBR-based data was used in addition to setting the
feature methods’ results in relation to gradings. In the last
step, features were visualised on healthy data.

At the time of writing, the novel device is in its first-in-
human trial. Hence no large clinical (pathological) dataset is
available. Therefore, most of the work relies on healthy data,
and it is unsure how well features and segmentation algorithms
will work on pathological images. Therefore, this publication
focus only on healthy data. Images of the DBR scale found
in the literature are used as reference and validation of the
feature’s functionality to compensate for this.

Eye redness can have multiple reasons and occur due to
enlargement of sclera or conjunctiva blood vessels [1][5]. This
work does not distinguish between those types in terms of
redness. Also, limbal redness can be treated separately but is
not part of this work.

II. METHODS

A. CDL Imaging Modality

The developed device provides a standardized ocular surface
imaging system. A novel lens design enables high-resolution
imaging of the visible ocular eye surface. The field-of-view is
21.3mm×16.0mm and the lateral resolution is approximately
15 µm. The device includes a fixation target to minimize
eye shivering and guarantee a centred view into the lens.
Furthermore, software for eye tracking and an illumination unit
is included. Chin rest and forehead band are used to stabilize
the patient’s head. The system aims for a standardized and
operator-independent image acquisition. The aforementioned
illumination unit shall provide an environmental independent
image capturing. The recorded images have a full resolution

Fig. 2: From the DBR scale three different severity-grades
were used as a template to generate artificial eyes

of 4768 px× 3580 px with a bit depth of 24 bit (8 bit each of
R-, G-, and B-channel) [5]. The device is not on the market
yet and is currently in the first-in-human clinical evaluation.

B. Healthy Dataset (CDL-2)

A dataset (CDL-2) was acquired with the CDL imaging
system. This set includes 34 images of 17 healthy subjects with
left and right eyes. Five out of 17 subjects were female. All
other genders were male. Six subjects have ametropia, and all
of them are male. The age of participants ranges from 26 to 46.
Of all participants, 11 eyes are brown, four are green, and two
are blue. Skin color range from two to six on the Fitzpatrick
scale [12]. The ROI used for the dataset is 1000 px × 1600 px
placed centrally in vertical and 1600 px in horizontal direction
from the iris center. Furthermore the ROIs are subdivided into
5 × 8 tiles containing sclera and non-sclera areas. Unlike
the other sets, this one contains information about the type
(sclera, non-sclera) of each tile. This information was added
as a result of a labeling process (see Section II-F). The dataset
is used to find an approach for automated sclera labelling
and to review redness features which were extracted in the
datasets mentioned before. The procedure was approved by
the Research Committee for Scientific Ethical Questions from
the UMIT TIROL (RCSEQ, 3012/22) and the MCI ethic
commission (Kennzahl: 20220303). Informed consent was
obtained from all volunteers prior to inclusion in this study.

C. DBR Phantoms

This small set contains three artificial eyes, which are 3D
printed by an external company [13]. Those created eyes are
using the DBR images as a template. Nasal and temporal
images of grades 2, 6 and 10 are printed on three white
eyes. In this way, three DBR phantoms were created. The
data characteristics are again equal to those from the CDL-2
dataset regarding size and subdivisions. Hence, three temporal
and three nasal ROIs graded as 2, 6 and 10 are available. This
data was used to validate if the redness intensity feature can
reproduce the grading to evaluate its usability.
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Fig. 3: Pipeline for eye redness extraction. From an initial
ocular surface image (1) a ROI is defined (2) which is
subdivided into tiles (3) and classified as sclera or non-sclera
(4). Subsequently the ocular redness of the sclera tiles are
extracted (5) analyzed and evaluated (6) [5].

D. Pipeline

The goal is to move from an initial imaged eye, like they are
given by the CDL imaging system, towards a method which
can describe the redness of this observed eye. The pipeline to
reach this includes ROI definition, sclera segmentation, fea-
ture extraction, and feature evaluation. Once the investigated
regions have been determined, the image’s characteristics can
be extracted to work as descriptors of eye redness. This is
tested in the final ”feature evaluation” step, which looks for
a unique association with eye redness. Parts of the pipeline
presented here were published within the scope of Ostheimer
et al. [5]. Figure 3 visualizes this pipeline focusing on sclera
segmentation and redness extraction.

E. Region of Interest

From all 34 images of the healthy subjects and the three
DBR phantoms, a temporal and nasal region of the size
1000 px × 1600 px was extracted. The centre of both ROIs is
placed 1600 px in horizontal direction left respectively right
from the iris centre. The idea is to cover approximately 50% of
the sclera and 50% of the non-sclera area to achieve a balanced
dataset for machine learning when defining the problem for
binary classification. This ROI was subdivided into 5 × 8
tiles with the size of 200 px × 200 px. The remaining tiles
and features were used to train a random-forest classifier. The
train-to-test ratio for the dataset was 80 to 20. The dataset
was split with respect to the subjects to reduce the risk of
overfitting because it was assumed that the correlation of tiles
of the same eyes or subjects was higher than between different
subjects.

F. Manual Labeling

The ROIs for the relevant data were further divided into
200 px × 200 px tiles leading to 2720 tiles for the CDL-2
dataset in total. Two observers labelled each tile with either
sclera (i.e. pure sclera) or non-sclera (i.e. skin, iris, iris-
sclera, skin-sclera). Tiles were dropped where the observer
labels disagreed, leading to 2638 tiles. An annotation tool

Fig. 4: Approaches for ROI-definition: Automated ROI based
on iris fetching included in the imaging system. The orange
rectangles define the ROI. The notch indicates the size of a
tile.

was used to label each tile efficiently [5]. The tool shows the
actual processed image with two aforementioned 1000 px ×
1600 px ROIs (Figure 4). An additional view is also provided
containing a larger view of the current 200 px × 200 px
tile, which has to be labelled by the operator. The operator
can accept the tile as sclera or decline it by only using the
keyboard. Afterwards, the program moves on to the next tile
in coloum-major order. This was done with all images of the
CDL-2 and DBR phantom dataset.

G. Automated Segmentation

Segmentation was done on the tiles of the CDL-2 dataset
using a random forest classifier. Therefore features were
extracted from the tiles and fed to the classifier. To do so,
gray-level co-occurrence matrices with 16 levels, 8 directions
(equally distributed around 360°), and 4 distances (2,3,5,7)
were calculated from each tile. From this, six haralick features
provided by the scikit image library [14] (contrast (con),
dissimilarity (dis), homogeneity (homogen), energy (E), cor-
relation (corr) and angular second moment (ASM ) were
calculated. Additionally mean (mean) and standard deviation
(std) for each color channel and the gray-scale tile was
calculated. Furthermore, the Fieguth-redness was calculated
and used as feature input, resulting in a list of 201 features.
Three classifier were trained, one with all features, the second
using only the ten most important features determined by
the feature importance-function and the last based on feature
correlation. The feature selection via correlation was based
on an absolute correlation coefficient of 0.95 and dropping
the feature with a lower correlation to the label. In this way,
seven features were left.

The matrix created out of this CDL-2 dataset was split into
train and test sets. First, the data was split by subjects to escape
the threat of bias, which is created if tiles of similar images
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are in the train and test dataset. Since tiles with mismatching
labels were discarded, the data was split into 76.5 % training
and 23.5 % test data, respectively.

H. Feature extraction

Two intensity-based features were selected from the litera-
ture to test them on the CDL-1 and DBR data. Namely, the
approach by Fieguth and Simpson [4]. The approach tries to
make a statement about eye redness by investigating relations
between the image color channels. The Fieguth-redness [4] is
defined as:

fr(S) =
1

∥S∥
∑
i∈S

2(SR)i − (SG)i − (SB)i
2[(SR)i + (SG)i + (SB)i]

(1)

S is the investigated image segment, SR,G,B the red, green
or blue image channel of the image segment and |S| is the
denominator representing the total number of pixels and works
as a normalization. By the definition of the function values are
limited between fr(S) = −0.5 and fr(S) = 1. Black pixels
in the image should be avoided as they result in a division by
zero. The theoretical possible maximum would initiated by a
red image, fr(S) = 0 by a white image and the minimum
by a blue or green image. Additional blurring with a kernel
of size 7 px × 7 px and a σ = 1 was applied beforehand to
reduce the effect of noise.

I. Feature Evaluation

The idea with the artificial eyes (see Fig. 2) is that with
additional knowledge about the severity-grade, measurable
differences in the output of the feature are expected. Because
the artificial eyes are based on the DBR scale, images extracted
with the novel system can validate the device as it enables to
set feature-values in relation to an already established grading
scale.

Feature values were extracted on the ROIs of the DBR
phantoms and the CDL-2 dataset and compared quantitatively
with each other. The phantom dataset includes severity labels,
and from the CDL-2 dataset it is assumed that all subjects are
healthy. Therefore values from the CDL-2 images are expected
at the constant (lower) level compared to those of the DBR
images.

III. RESULTS

A. ROI Definition for Automation

To define a fixed ROI for high-throughput image processing
of the CDL-2 dataset a ROI was defined based on two
requirements: (i) Consider size and position where sclera area
is present in most images and (ii) ROI should also contain
non-sclera regions aiming for a 50/50 ratio. Following this
the region was set to 1600 px × 1000 px with a distance of
1600 px to the iris center measured at the center of the region
(Figure 4). This applies to both nasal and temporal regions.

model Features (descending order of importance for RF10)

RF10 meanG, corr(7,315), corr(7,45)meanR,
corr(7,225), stdgray ,meanB ,
stdG, corr(5,45), corr(5,0)

RF(corr) homogen(5,90), homogen(5,180),
E(2,45), corr(7,90),meanR, stdR, fr

TABLE I: Most relevant features for the RF classifier by
feature importance and correlation.

B. ROI Tiling for Sclera Segmentation

As the data is used for sclera segmentation, the regions are
divided into small tiles that the classifier must determine. The
tiles had to be small enough so that only tiles containing sclera
could be found (because only then does the tile get labelled as
such (see Section II-F)), but large enough to detect vessels and
other structures. Therefore, and with the additional information
from Section III-A the tile size was set to 200 px × 200 px
resulting in 8× 5 tile regions.

C. Classification of Sclera/Non-sclera

1) Manual Classification: In a joint work, [5] the CDL-
2 dataset with 2720 non-overlapping tiles was labelled by
two observers. The findings presented in Ostheimer et al.
are an agreement between those two observers of 96.99%,
which means a disagreement of 82 tiles. With respect to
this, 47.57% of the tiles were labeled as sclera and 52.43%
as non-sclera tiles. In Figure 5 the agreement between both
observers is indicated as non-sclera (black), sclera (white) and
disagreement (gray).

2) ML Classification: As described in Section II-G, three
RF classifiers were trained, each with a different feature set.
One set included all features, the remaining two only a subset
which can be found in Table I. The reduction was done by
feature importance [15] and correlation. The last one resulted
in n = 7 features. The split between test and train data was
done random but with respect to subject dependency to ensure
images of eyes from the same subject were included in only
one of the two datasets to reduce the risk of bias. The RF
classifier trained with its associated part of the CDL-2 dataset
achieved on the additional test dataset and with the features
from the correlation-approach the best results. The accuracy
was 0.974, precision and F1-score were 0.97, and recall
0.98 (Table II). Investigating images on which the classifier
predicted its label showed difficulties for the classifier to
distinguish between birthmarks and non-sclera regions, as
one can see from Figure 5 (A) tile (A4). Also, one can see
by comparing tile (A3) from Figure 5 (A) less conservative
labelling by the classifier than one of the observers.

model n accuracy precision recall f1-score

RFall 201 0.971 0.97 0.97 0.97
RF10 10 0.943 0.94 0.94 0.94
RFcorr 7 0.974 0.97 0.98 0.97

TABLE II: Performance values of the random forest classifier
to label tiles as sclera.
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Fig. 5: (A) Sclera segmentation for a ROI with disagreement
between two observers (A3) and between observers and RF
prediction (A4). (C) shows those tiles in detail. (B) Sclera
segmentation for a ROI with no disagreement between either
observer nor RF prediction.

D. Artificial Eyes

Investigating the artificial eyes based on the DBR scale
(P = phantoms), 78 tiles were labelled as sclera for the
nasal and 91 for the temporal side. For each side (nasal and
temporal) a linear fit was applied for the sclera-tiles. Also,
the mean values of each ROI can be found in Figure 6a. The
slope nasal and temporal is kPn = 0.0018 and kPt = 0.0023.
From the graph of the original publication [16] in Figure 6b a
slope of approximately kDBR

n,t = 0.0025 is derived from both
sides. All values for the artificial eyes differ by an offset of
approximately d = 0.35 from the original values [16].

E. Redness Extraction

From Figure 7 one can see the redness values for the healthy
subjects fCDL−2

r stay on a lower level µCDL−2
r with respect

to the DBR data fDBR
r and do not spread across the range

of the DBR values (frDBR
min , frDBR

max ). By reviewing the data,
outliers for eye = 2 and eye = 16 could be identified as
Birthmarks (e.g. Figure 9b). From the DBR phantoms, a rise
for the different grades is visible.

F. Subject Characteristics

Redness intensity was applied to the CDL-2 dataset and
investigated regarding subject characteristics. Scatter and box-
plots are shown in Figure 8. For the characteristics of sex,
eye color, and skin color all median values, as well as the
interquartile range, are on a similar level. Higher values for
individual variables of a certain characteristic do exist but are
outliers, e.g. fr ≈ 0.3 is from a birthmark. No trend can be
recognized by a scatter plot of redness versus age. Two outliers
can be recognized for eye 2 and eye 16.

G. Visualization

A heatmap was created to visualize the extracted redness,
For each tile of a ROI labelled as sclera, the Fieguth-redness
was calculated and visualized in a corresponding red tone.
Non-sclera tiles were masked black. The limits were set
approximately according to the highest and lowest value of

20 40 60 80 100
DBR scale

0.00

0.05

0.10

0.15

0.20

Fi
eg

ut
h

re
dn

es
s

linear fit Nasal
linear fit Temporal
Nasal
Temporal

(a) Mean redness of the DBR phantoms
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Fig. 6: (a) Upper plot visualizes the mean redness value of
each artificial eye and ROI including a linear fit to compare
with (b) the results from the DBR scale from literature[16].
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Fig. 7: Fieguth-redness for all tiles of all healthy eyes (CDL-
2) and DBR phantoms. Constant lower values for healthy data
and higher values for rising severity in the DBR phantom data.

the DBR phantoms which were fP
rmax

= 0.5 and fP
rmin

= 0,
respectively. This range also covers all values from other
datasets (Figure 7). For better interpretation, the heatmap was
subsequently placed transparent on top of the original image
(Figure 9). From this visualization, one can see which parts
of the sclera are taken into account and what sub-regions are
suggested by the algorithm as more reddish.

IV. DISCUSSION

A. Region of Interest

Sclera segmentation is necessary to adjust the region of
interest to the patient’s eyelid opening to ensure accurate
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Fig. 8: Influence of different subject characteristics to Fieguth redness.

redness detection. The fixed ROI was divided into tiles, which
were consequently manually annotated, and carried out by two
observers.

The manual segmentation reached a good amount of agree-
ment among the observer probably because both observers
discussed and agreed on the requirements necessary to label
a tile as sclera or non-sclera. The reason why there were still
disagreements was perhaps due to two factors.

First, the inconsistency of the upper tiles is most likely due
to blurred eyelids in the image. Second, the lack of agreement
at the iris edge is probably due to the color gradient around
the iris that results from the anatomical structure. This makes
it difficult to decide where the iris begins, and the sclera
ends. Including a reliable iris and limbus segmentation might
overcome this problem in the future.

The manual labels were furthermore used to train an ML
algorithm to see how well this step can be automated. The
performance from the RF seems to be a promising start, but
the images used to train the random forest classifier were all
from healthy subjects. In the future, detecting and segmenting
the sclera of pathological eyes will be necessary. Therefore,
the performance results should be taken with caution. Fur-
thermore, it is unclear how well the classifier performs in
pathological eyes or whether similar performance results can
be expected when additional pathological images are used as
training data.

Another limitation is that the amount of the dataset is
relatively small. The regions were split into tiles where we
assume a certain correlation from tiles of the same ROI. Hence,
to train the classifier, the data was split according to patients to
provide an appropriate insight into the model’s generalization.
Because of the small dataset and the splitting mentioned above,
the train- respectively test-dataset is less diverse. This means,

for example, no blue eyes might be in one dataset, leading to
weaker performance. However, our classifier’s results seem
good because they reach a performance comparable to the
inter-observer agreement of the manual classification. This
might change if we not only want to distinguish between sclera
and non-sclera but also find iris, eye leashes and anomalies like
birthmarks or lesions. Especially birthmarks or other lesions
might be interesting to distinguish. As it can be seen from
Figure 9b and Figure 5, it might wrongly be labelled as non-
sclera, or if not, the algorithm rate the birthmark as very red.

Comparable approaches try to segment the whole sclera
in an image, such as Sirazitdinova et al. [3], Sárándi et al.
[17] or Sánchez et al [18]. This is difficult, and requires
multiple steps and a certain amount of computational effort.
Other approaches [19] [20] are based on manual segmentation
by marking a rectangle or drawing a spline. Therefore, the
approach presented here is a good alternative as it has low
computational effort but still tries to recognize the individual
area size. The approach could also be expanded to larger
regions. Furthermore, the optimal tile size should be the
subject of future investigations.

Feature extraction for the random forest classifier was
applied using all six Haralick features the sci-kit image library
provides. Expanding the feature-set could be considered when
more than a binary classification is intended. Additionally,
each colour channel’s mean and standard deviation in the RGB
color space was used. Other color spaces could be considered
in the future. [17][21].

Extension of the approach to Deep Learning would circum-
vent the problem of finding the right features for optimal sclera
segmentation. Moreover, other methods may be more suitable
in the future, especially if the problem complexity increases by
including other classes such as iris, eye leashes or anomalies
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(a) ROI with no anomalies in the sclera

(b) ROI with anomalies in the sclera

Fig. 9: Example of visualization of extracted features on
healthy ROI with no anomalies (a) and with a birthmark (b).
Fieguth-redness next to the extracted ROI and the impact to
the grading of anomalies in the sclera.

like birthmarks or lesions.

B. Feature Extraction

An advantage of intensity-based methods is the scale invari-
ant which is especially useful when comparing datasets with
different shapes and sizes. Fieguth and Simpson [4] mentions
that their practical values move approximately in the range
of 0 ≤ f lit

r ≤ 0.25. Macchi et al. [16] which invented the
DBR scale and which algorithm for the scale is based on [4]
reached values between 0.35 ≤ fscale

r ≤ 0.6. In both cases,
the distance from most to least red is around 0.25. In our case,
three artificial eyes based on the DBR scale were imaged and
analyzed individually, nasal and temporal. The printed eyes
represent grades 2, 6 and 10 on the DBR scale. The extended
range is around 0.16 and 0.20 for the nasal and temporal
side of the DBR phantoms, respectively. If the same images
were used, one had to assume to get similar results. Results
clearly show an offset (d = 0.35) but the slopes seem to be
comparable (kPt = 0.0023, kPn = 0.0018, kDBR

n,t = 0.0025).
The range between most and least redness is also close to
the values known from the literature [4][16]. However, these
results also validate the ability of the device in combination
with the algorithm to detect redness changes.

C. Subject Characteristics

McMoonies and Ho, and Murphy et al. found differences
in redness in gender and age[22][23]. Murphy et al. found 0.2
units higher for males than females on an interpolated CCLRU
scale ranging from one to four [23]. Furthermore, the authors
found an increase in redness by 0.05 units per decade. Our
subjects age in the CDL-2 data range from mid-twenties to
mid-forties. The mentioned study has participants from the
age of 16 to 77. The data studied here (CDL-2) show no trend
in age, sex, or other patient characteristics. However, larger
studies with healthy subjects, as mentioned above, show such
trends. Therefore, it would be interesting to collect a larger
dataset to detect further redness population characteristics.

D. Visualization

The upper and lower limits for the color scale should
be considered for the visualization of the redness intensity.
Choosing theoretical limits might result in unnecessary low
sensitivity. Fieguth and Simpson [4] mentions values between
0 ≤ fr ≤ 0.25 for these experiment. A threshold value
of fr = 1 would result in all values having similar colors.
On the other hand, if the threshold value were set too low,
moderately red eyes could not be distinguished from strongly
red eyes—the same hold for the lower limit. Hence, the actual
parameters should be set after evaluating more clinical data.
Currently, chosen values are 0 and 0.5.

Proper visualization is essential to show and guide the op-
erator to interesting regions; additionally, areas which are not
covered by the algorithm mustn’t be hidden from the operator
as they might include important information. Furthermore, this
becomes more important when the pipeline is integrated into
decision support software.

V. CONCLUSION

The novel ocular surface imaging device has the potential
to objectively and reproducible grade bulbar eye redness based
on its recorded images. The first steps in this direction were
taken with the procedure presented here and its results. An ML
approach showed promising results and will enable automated
sclera segmentation of new unseen images. For a simple sclera
vs non-sclera classification in healthy subjects, a RF classifier
seems sufficient, neglecting the influence of birthmarks etc.
Deep learning approaches might be necessary if more classes
like birthmarks, iris etc. should be predicted because those
make accurate segmentation complex and manual feature
engineering cumbersome.

The severity of the DBR phantom images showed a good
correlation with the intensity feature. This supports the as-
sumption that the intensity feature is a working measure for
bulbar redness on the novel imaging system.

No differences in subject characteristics could be detected
from a small dataset and with qualitative measures. A detailed
statistical analysis was not performed as the dataset was
considered too small.

Visualization of the redness extraction will be an important
task to handle as it is the interface to clinicians. In addition,
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it forms the basis for whether important information is recog-
nized more quickly or is overlooked. Therefore future efforts
should address this issue by evaluating and taking a closer
look at the clinical data.
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